Systematic inference identifies a major source of heterogeneity in cell signaling dynamics: the rate-limiting step number

Cited 14 time in webofscience Cited 0 time in scopus
  • Hit : 206
  • Download : 0
Identifying the sources of cell-to-cell variability in signaling dynamics is essential to understand drug response variability and develop effective therapeutics. However, it is challenging because not all signaling intermediate reactions can be experimentally measured simultaneously. This can be overcome by replacing them with a single random time delay, but the resulting process is non-Markovian, making it difficult to infer cell-to-cell heterogeneity in reaction rates and time delays. To address this, we developed an efficient and scalable moment-based Bayesian inference method (MBI) with a user-friendly computational package that infers cell-to-cell heterogeneity in the non-Markovian signaling process. We applied MBI to single-cell expression profiles from promoters responding to antibiotics and discovered a major source of cell-to-cell variability in antibiotic stress response: the number of rate-limiting steps in signaling cascades. This knowledge can help identify effective therapies that destroy all pathogenic or cancer cells, and the approach can be applied to precision medicine.
Publisher
AMER ASSOC ADVANCEMENT SCIENCE
Issue Date
2022-03
Language
English
Article Type
Article
Citation

SCIENCE ADVANCES, v.8, no.11

ISSN
2375-2548
DOI
10.1126/sciadv.abl4598
URI
http://hdl.handle.net/10203/292782
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0