Ultrasensitive multiplexed miRNA detection based on a self-priming hairpin-triggered isothermal cascade reaction

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 195
  • Download : 0
We herein describe an ultrasensitive isothermal strategy to detect miRNAs in a multiplexed manner by utilizing a self-priming hairpin-triggered cascade reaction and the adsorption properties of graphene oxide (GO). In principle, a self-priming hairpin probe (SHP) was designed to be opened through binding to the target miRNA and rearranged to serve as a primer. The following extension displaced the target miRNA to be recycled for opening another SHP and produced a double-stranded (ds) SHP with a longer stem region. The nicking enzyme recognition site within the ds SHP was then subjected to continuous repeated nicking and extension reactions, consequently producing a large amount of the trigger sequence. In the second reaction phase, the trigger also transformed another single-stranded (ss) target template probe (TTP) into ds TTP and simultaneously produced numerous target mimic strands (Target ') in the same manner, which could activate the first reaction phase, mimicking the target miRNA. Since the ss portions of the two probes were all transformed to the ds forms (ds SHP and ds TTP), they are resistant to the adsorption by graphene oxide (GO) and then emitted intense fluorescence after the application of GO while the ss forms of the two probes produced a negligible fluorescence signal without the target miRNAs. Based on this unique design principle, we were able to simultaneously identify multiple target miRNAs very sensitively down to attomolar levels (42.63 aM for miRNA let-7a, 13.08 aM for miRNA-141, and 10.14 aM for miRNA-98) within 30 min.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2022-02
Language
English
Article Type
Article
Citation

CHEMICAL COMMUNICATIONS, v.58, no.14, pp.2279 - 2282

ISSN
1359-7345
DOI
10.1039/d1cc06282d
URI
http://hdl.handle.net/10203/292304
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0