In Situ Electrodeposition of Gold Nanostructures in 3D Ultra-Thin Hydrogel Skins for Direct Molecular Detection in Complex Mixtures with High Sensitivity

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 71
  • Download : 0
Surface-enhanced Raman spectroscopy (SERS) based on nanostructured metals has promise as a nondestructive tool for sensitive molecular detection. However, metal surfaces are prone to fouling by the nonspecific adsorption of macromolecules, which limits the selective detection of small molecules in complex fluids. Therefore, samples must be purified and enriched before Raman analysis, which makes on-site detection difficult. In the present work, Au nanopillar arrays are encapsulated with ultra-thin hydrogel skins to protect the metal surfaces against macromolecular interferents while selectively allowing the infusion of small target molecules. In addition, densely packed Au nanostructures are produced in situ in the 3D mesh of the hydrogel skin via electrodeposition, which effectively captures targets into dense plasmonic nanogaps, providing rapid and ultrasensitive molecular detection. The synergistic influence of the size-selective permeability of the hydrogel skin and the in situ formation of hotspots enables the direct, highly sensitive detection of pyocyanin dissolved in an aqueous solution of bovine serum albumin and human serum. It is believed that the new nanocomposite materials and techniques will enable rapid and affordable SERS-based on-site analysis and point-of-care testing.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2021-12
Language
English
Article Type
Article
Citation

LASER & PHOTONICS REVIEWS, v.15, no.12

ISSN
1863-8880
DOI
10.1002/lpor.202100316
URI
http://hdl.handle.net/10203/290968
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0