잡음과 스펙트럼 이동에 강인한 CNN 기반 라만 분광 알고리즘CNN based Raman Spectroscopy Algorithm That is Robust to Noise and Spectral Shift

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 943
  • Download : 0
DC FieldValueLanguage
dc.contributor.author박재현ko
dc.contributor.author유형근ko
dc.contributor.author이창식ko
dc.contributor.author장동의ko
dc.contributor.author박동조ko
dc.contributor.author남현우ko
dc.contributor.author박병황ko
dc.date.accessioned2021-12-13T06:41:31Z-
dc.date.available2021-12-13T06:41:31Z-
dc.date.created2021-12-13-
dc.date.created2021-12-13-
dc.date.issued2021-06-
dc.identifier.citation한국군사과학기술학회지, v.24, no.3, pp.264 - 271-
dc.identifier.issn1598-9127-
dc.identifier.urihttp://hdl.handle.net/10203/290486-
dc.description.abstractRaman spectroscopy is an equipment that is widely used for classifying chemicals in chemical defense operations. However, the classification performance of Raman spectrum may deteriorate due to dark current noise, background noise, spectral shift by vibration of equipment, spectral shift by pressure change, etc. In this paper, we compare the classification accuracy of various machine learning algorithms including k-nearest neighbor, decision tree, linear discriminant analysis, linear support vector machine, nonlinear support vector machine, and convolutional neural network under noisy and spectral shifted conditions. Experimental results show that convolutional neural network maintains a high classification accuracy of over 95 % despite noise and spectral shift. This implies that convolutional neural network can be an ideal classification algorithm in a real combat situation where there is a lot of noise and spectral shift.-
dc.languageKorean-
dc.publisher한국군사과학기술학회-
dc.title잡음과 스펙트럼 이동에 강인한 CNN 기반 라만 분광 알고리즘-
dc.title.alternativeCNN based Raman Spectroscopy Algorithm That is Robust to Noise and Spectral Shift-
dc.typeArticle-
dc.type.rimsART-
dc.citation.volume24-
dc.citation.issue3-
dc.citation.beginningpage264-
dc.citation.endingpage271-
dc.citation.publicationname한국군사과학기술학회지-
dc.identifier.kciidART002722221-
dc.contributor.localauthor장동의-
dc.contributor.localauthor박동조-
dc.contributor.nonIdAuthor박재현-
dc.contributor.nonIdAuthor남현우-
dc.contributor.nonIdAuthor박병황-
dc.description.isOpenAccessN-
dc.subject.keywordAuthorRaman Spectroscopy(라만 분광기)-
dc.subject.keywordAuthorConvolutional Neural Network(합성곱 신경망)-
dc.subject.keywordAuthorMachine Learning(기계학습)-
dc.subject.keywordAuthorSpectral Shift Robustness(스펙트럼 이동 강인성)-
dc.subject.keywordAuthorNoise Robustness(잡음 강인성)-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0