DC Field | Value | Language |
---|---|---|
dc.contributor.author | 박재현 | ko |
dc.contributor.author | 유형근 | ko |
dc.contributor.author | 이창식 | ko |
dc.contributor.author | 장동의 | ko |
dc.contributor.author | 박동조 | ko |
dc.contributor.author | 남현우 | ko |
dc.contributor.author | 박병황 | ko |
dc.date.accessioned | 2021-12-13T06:41:31Z | - |
dc.date.available | 2021-12-13T06:41:31Z | - |
dc.date.created | 2021-12-13 | - |
dc.date.created | 2021-12-13 | - |
dc.date.issued | 2021-06 | - |
dc.identifier.citation | 한국군사과학기술학회지, v.24, no.3, pp.264 - 271 | - |
dc.identifier.issn | 1598-9127 | - |
dc.identifier.uri | http://hdl.handle.net/10203/290486 | - |
dc.description.abstract | Raman spectroscopy is an equipment that is widely used for classifying chemicals in chemical defense operations. However, the classification performance of Raman spectrum may deteriorate due to dark current noise, background noise, spectral shift by vibration of equipment, spectral shift by pressure change, etc. In this paper, we compare the classification accuracy of various machine learning algorithms including k-nearest neighbor, decision tree, linear discriminant analysis, linear support vector machine, nonlinear support vector machine, and convolutional neural network under noisy and spectral shifted conditions. Experimental results show that convolutional neural network maintains a high classification accuracy of over 95 % despite noise and spectral shift. This implies that convolutional neural network can be an ideal classification algorithm in a real combat situation where there is a lot of noise and spectral shift. | - |
dc.language | Korean | - |
dc.publisher | 한국군사과학기술학회 | - |
dc.title | 잡음과 스펙트럼 이동에 강인한 CNN 기반 라만 분광 알고리즘 | - |
dc.title.alternative | CNN based Raman Spectroscopy Algorithm That is Robust to Noise and Spectral Shift | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.citation.volume | 24 | - |
dc.citation.issue | 3 | - |
dc.citation.beginningpage | 264 | - |
dc.citation.endingpage | 271 | - |
dc.citation.publicationname | 한국군사과학기술학회지 | - |
dc.identifier.kciid | ART002722221 | - |
dc.contributor.localauthor | 장동의 | - |
dc.contributor.localauthor | 박동조 | - |
dc.contributor.nonIdAuthor | 박재현 | - |
dc.contributor.nonIdAuthor | 남현우 | - |
dc.contributor.nonIdAuthor | 박병황 | - |
dc.description.isOpenAccess | N | - |
dc.subject.keywordAuthor | Raman Spectroscopy(라만 분광기) | - |
dc.subject.keywordAuthor | Convolutional Neural Network(합성곱 신경망) | - |
dc.subject.keywordAuthor | Machine Learning(기계학습) | - |
dc.subject.keywordAuthor | Spectral Shift Robustness(스펙트럼 이동 강인성) | - |
dc.subject.keywordAuthor | Noise Robustness(잡음 강인성) | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.