비접촉식 화학작용제 탐지용 라만 분광계를 위한 Denoising Autoencoder 기반 잡음제거 기술Denoising Autoencoder based Noise Reduction Technique for Raman Spectrometers for Standoff Detection of Chemical Warfare Agents

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 661
  • Download : 0
Raman spectrometers are studied and developed for the military purposes because of their nondestructive inspection capability to capture unique spectral features induced by molecular structures of colorless and odorless chemical warfare agents(CWAs) in any phase. Raman spectrometers often suffer from random noise caused by their detector inherent noise, background signal, etc. Thus, reducing the random noise in a measured Raman spectrum can help detection algorithms to find spectral features of CWAs and effectively detect them. In this paper, we propose a denoising autoencoder for Raman spectra with a loss function for sample efficient learning using noisy dataset. We conduct experiments to compare its effect on the measured spectra and detection performance with several existing noise reduction algorithms. The experimental results show that the denoising autoencoder is the most effective noise reduction algorithm among existing noise reduction algorithms for Raman spectrum based standoff detection of CWAs.
Publisher
한국군사과학기술학회
Issue Date
2021-08
Language
Korean
Citation

한국군사과학기술학회지, v.24, no.4, pp.374 - 381

ISSN
1598-9127
URI
http://hdl.handle.net/10203/290484
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0