Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 65
  • Download : 0
Behavioral cloning has proven to be effective for learning sequential decision-making policies from expert demonstrations. However, behavioral cloning often suffers from the causal confusion problem where a policy relies on the noticeable effect of expert actions due to the strong correlation but not the cause we desire. This paper presents Object-aware REgularizatiOn (OREO), a simple technique that regularizes an imitation policy in an object-aware manner. Our main idea is to encourage a policy to uniformly attend to all semantic objects, in order to prevent the policy from exploiting nuisance variables strongly correlated with expert actions. To this end, we introduce a two-stage approach: (a) we extract semantic objects from images by utilizing discrete codes from a vector-quantized variational autoencoder, and (b) we randomly drop the units that share the same discrete code together, i.e., masking out semantic objects. Our experiments demonstrate that OREO significantly improves the performance of behavioral cloning, outperforming various other regularization and causality-based methods on a variety of Atari environments and a self-driving CARLA environment. We also show that our method even outperforms inverse reinforcement learning methods trained with a considerable amount of environment interaction.
Publisher
Neural Information Processing Systems
Issue Date
2021-12-07
Language
English
Citation

35th Conference on Neural Information Processing Systems, NeurIPS 2021

URI
http://hdl.handle.net/10203/290295
Appears in Collection
RIMS Conference Papers
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0