Diversity matters when learning from ensembles

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 57
  • Download : 0
Deep ensembles excel in large-scale image classification tasks both in terms of prediction accuracy and calibration. Despite being simple to train, the computation and memory cost of deep ensembles limits their practicability. While some recent works propose to distill an ensemble model into a single model to reduce such costs, there is still a performance gap between the ensemble and distilled models. We propose a simple approach for reducing this gap, i.e., making the distilled performance close to the full ensemble. Our key assumption is that a distilled model should absorb as much function diversity inside the ensemble as possible. We first empirically show that the typical distillation procedure does not effectively transfer such diversity, especially for complex models that achieve near-zero training error. To fix this, we propose a perturbation strategy for distillation that reveals diversity by seeking inputs for which ensemble member outputs disagree. We empirically show that a model distilled with such perturbed samples indeed exhibits enhanced diversity, leading to improved performance.
Publisher
Neural Information Processing Systems
Issue Date
2021-12-08
Language
English
Citation

35th Conference on Neural Information Processing Systems, NeurIPS 2021

URI
http://hdl.handle.net/10203/290288
Appears in Collection
RIMS Conference Papers
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0