GAIN-QoS: A Novel QoS Prediction Model for Edge Computing

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 369
  • Download : 0
With recent increases in the number of network-connected devices, the number of edge computing services that provide similar functions has increased. Therefore, it is important to recommend an optimal edge computing service, based on quality-of-service (QoS). However, in the real world, there is a cold-start problem in QoS data: highly sparse invocation. Therefore, it is difficult to recommend a suitable service to the user. Deep learning techniques were applied to address this problem, or context information was used to extract deep features between users and services. However, edge computing environment has not been considered in previous studies. Our goal is to predict the QoS values in real edge computing environments with improved accuracy. To this end, we propose a GAIN-QoS technique. It clusters services based on their location information, calculates the distance between services and users in each cluster, and brings the QoS values of users within a certain distance. We apply a Generative Adversarial Imputation Nets (GAIN) model and perform QoS prediction based on this reconstructed user service invocation matrix. When the density is low, GAIN-QoS shows superior performance to other techniques. In addition, the distance between the service and user slightly affects performance. Thus, compared to other methods, the proposed method can significantly improve the accuracy of QoS prediction for edge computing, which suffers from cold-start problem.
Publisher
RIVER PUBLISHERS
Issue Date
2022-01
Language
English
Article Type
Article
Citation

JOURNAL OF WEB ENGINEERING, v.21, no.1, pp.27 - 51

ISSN
1540-9589
DOI
10.13052/jwe1540-9589.2112
URI
http://hdl.handle.net/10203/290091
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0