A Sub-Micron-Thick stretchable adhesive layer for the lamination of arbitrary elastomeric substrates with enhanced adhesion stability

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 395
  • Download : 0
Binding two separate elastomeric substrates is of great importance for the fabrication of next generation stretchable devices including epidermal electronics and soft robotics. However, it is still extremely challenging to find an adhesive to bind arbitrary elastomers with excellent adhesion strength and reliability without compromising the stretchability of the laminated elastomeric substrates. In this study, a sub-micron-thick (∼500 nm) stretchable adhesive was synthesized by using a vapor-phase deposition method. The stretchable adhesive consists of a copolymer film containing curable epoxy and hydroxyl functionalities with sufficiently low glass transition temperature (Tg) in order to render the adhesive elastomeric. Moreover, depositing the adhesive layer in vapor phase induced an interpenetrating polymer network (IPN) at the interface between the elastomeric substrate and stretchable adhesive layer, which enabled strong binding between arbitrary elastomeric substrates such as polydimethylsiloxane (PDMS), Silbione™, 3 M VHB™, and Ecoflex™, with substantially enhanced adhesion stability and high transparency. The adhesion strength was fully retained even after more than 105 times of repeated stretch-release cycles of 50% strain. The IPN-induced stretchable but ultrathin adhesive layer developed in this study will serve as a platform bonding technology for the wide range of soft matter engineering applications.
Publisher
ELSEVIER SCIENCE SA
Issue Date
2022-02
Language
English
Article Type
Article
Citation

CHEMICAL ENGINEERING JOURNAL, v.429, pp.132250

ISSN
1385-8947
DOI
10.1016/j.cej.2021.132250
URI
http://hdl.handle.net/10203/290005
Appears in Collection
ME-Journal Papers(저널논문)CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0