Enhanced thermoelectric composite performance from mesoporous carbon additives in a commercial Bi0.5Sb1.5Te3 matrix

Cited 16 time in webofscience Cited 0 time in scopus
  • Hit : 220
  • Download : 0
Composites were prepared, through hot pressing, using carbon materials with different pore size distributions as additives for commercial Bi0.5Sb1.5Te3 thermoelectric material (BST, p-type). Thermoelectric properties of the composites were measured in a temperature range of 298‒473 K. Thermal conductivity of the composites, especially lattice thermal conductivity, was effectively decreased due to the mesoporous properties of the incorporated carbon additives. The electrical conductivity of the composites slightly decreased due to the electron scattering at the interface between the carbon material and the commercial BST matrix. The composite with 0.2 vol.% mesoporous carbon powder (36% mesoporosity) exhibited a figure of merit value approximately 10.7% higher than that of commercial BST without additives. This behavior resulted in 116% improved output power in the composite block-based single element compared with a bare BST thermoelectric block. The enhanced figure of merit was attributed to the effective reduction of lattice thermal conductivity by acoustic phonons scattering at the interface between the BST matrix and the mesoporous carbon as well as at the pore surfaces within the mesoporous carbon. By utilizing mesoporous carbon materials used in this study, the shortcomings and economic difficulties of the composite process with low dimensional carbon additives (carbon nanotubes, graphene, and nanodiamond) can be overcome for extensive practical applications. Mesoporous carbon powder with a tailored porosity distribution revealed the validity of bulk-type carbon additives to enhance the figure of merit of commercial thermoelectric materials.
Publisher
Elsevier
Issue Date
2021-12
Language
English
Article Type
Article
Citation

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, v.94, no.20, pp.175 - 182

ISSN
1005-0302
DOI
10.1016/j.jmst.2021.02.072
URI
http://hdl.handle.net/10203/289995
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0