Unit Module-Based Convergence Acceleration for Topology Optimization Using the Spatiotemporal Deep Neural Network

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 227
  • Download : 142
DC FieldValueLanguage
dc.contributor.authorJoo, Younghwanko
dc.contributor.authorYu, Yonggyunko
dc.contributor.authorJang, In Gwunko
dc.date.accessioned2021-11-30T06:43:16Z-
dc.date.available2021-11-30T06:43:16Z-
dc.date.created2021-11-29-
dc.date.created2021-11-29-
dc.date.created2021-11-29-
dc.date.created2021-11-29-
dc.date.issued2021-11-
dc.identifier.citationIEEE ACCESS, v.9, pp.149766 - 149779-
dc.identifier.issn2169-3536-
dc.identifier.urihttp://hdl.handle.net/10203/289690-
dc.description.abstractThis study proposes a unit module-based acceleration method for 2-D topology optimization. For the purpose, the first-stage topology optimization is performed until the predefined iteration. After a whole design domain is divided into a set of unit modules, information on the spatiotemporal characteristics of intermediate designs and a filtering radius is used to separately predict a near-optimal design of each unit module through a trained long short-term memory (convLSTM) network. Then, in the second-stage topology optimization, a combined near-optimal design of a whole design domain is used as an initial design to determine the optimized design in a more efficient way. To train a convLSTM network, a history of intermediate designs is obtained under a randomly generated boundary condition of a unit module. The filtering radius is also used as the training data to reflect the geometric features affected by a filtering process. For four examples with different design domains and boundary conditions, the proposed method successfully provides the accelerated convergence up to 6.09 with a negligible loss of accuracy less than 1.12% error. These numerical results also demonstrate that the proposed unit module-based approach achieves a scalable convergence acceleration at a design domain of an arbitrary size (or resolution).-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleUnit Module-Based Convergence Acceleration for Topology Optimization Using the Spatiotemporal Deep Neural Network-
dc.typeArticle-
dc.identifier.wosid000717769700001-
dc.identifier.scopusid2-s2.0-85118649073-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.beginningpage149766-
dc.citation.endingpage149779-
dc.citation.publicationnameIEEE ACCESS-
dc.identifier.doi10.1109/ACCESS.2021.3125014-
dc.contributor.localauthorJang, In Gwun-
dc.contributor.nonIdAuthorJoo, Younghwan-
dc.contributor.nonIdAuthorYu, Yonggyun-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorOptimization-
dc.subject.keywordAuthorTopology-
dc.subject.keywordAuthorNetwork topology-
dc.subject.keywordAuthorTraining data-
dc.subject.keywordAuthorFinite element analysis-
dc.subject.keywordAuthorFiltering-
dc.subject.keywordAuthorConvergence-
dc.subject.keywordAuthorConvergence acceleration-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorfinite element method-
dc.subject.keywordAuthorstructural topology optimization-
dc.subject.keywordPlusDESIGN-
Appears in Collection
GT-Journal Papers(저널논문)
Files in This Item
122563.pdf(2.4 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0