DC Field | Value | Language |
---|---|---|
dc.contributor.author | Im, Bo-Hae | ko |
dc.contributor.author | Lee, Wonwoong | ko |
dc.date.accessioned | 2021-11-25T06:40:31Z | - |
dc.date.available | 2021-11-25T06:40:31Z | - |
dc.date.created | 2021-03-17 | - |
dc.date.created | 2021-03-17 | - |
dc.date.issued | 2021-12 | - |
dc.identifier.citation | RAMANUJAN JOURNAL, v.56, no.3, pp.865 - 889 | - |
dc.identifier.issn | 1382-4090 | - |
dc.identifier.uri | http://hdl.handle.net/10203/289462 | - |
dc.description.abstract | We prove that for a graded algebra A with a derivation D-A satisfying certain conditions, and a bi-graded algebra A[q] with an extended derivation D of D-A, there are only finitely many D-A- and D-invariant (or differential with respect to D-A and D) principal prime ideals of A and of A[q], respectively. As its application, we prove the algebraic independence of the values of certain Eisenstein series for the arithmetic Hecke groups H(m) for m = 4, 6, infinity, which is an extension of Nesterenko's result for the Eisenstein series for SL2(Z). | - |
dc.language | English | - |
dc.publisher | SPRINGER | - |
dc.title | The finiteness of derivation-invariant prime ideals and the algebraic independence of the Eisenstein series | - |
dc.type | Article | - |
dc.identifier.wosid | 000622650600002 | - |
dc.identifier.scopusid | 2-s2.0-85101712972 | - |
dc.type.rims | ART | - |
dc.citation.volume | 56 | - |
dc.citation.issue | 3 | - |
dc.citation.beginningpage | 865 | - |
dc.citation.endingpage | 889 | - |
dc.citation.publicationname | RAMANUJAN JOURNAL | - |
dc.identifier.doi | 10.1007/s11139-021-00404-z | - |
dc.contributor.localauthor | Im, Bo-Hae | - |
dc.description.isOpenAccess | N | - |
dc.type.journalArticle | Article | - |
dc.subject.keywordAuthor | Differential ideal | - |
dc.subject.keywordAuthor | Transcendental | - |
dc.subject.keywordAuthor | The Hecke group | - |
dc.subject.keywordAuthor | Modular form | - |
dc.subject.keywordAuthor | Quasi-modular form | - |
dc.subject.keywordAuthor | Eisenstein series | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.