Freeze-Thawing-Induced Macroporous Catechol Hydrogels with Shape Recovery and Sponge-like Properties

Cited 16 time in webofscience Cited 0 time in scopus
  • Hit : 212
  • Download : 11
fields due to their adhesive and cohesive properties, hemostatic abilities, and biocompatibility. Catechol moieties can be oxidized to o-catecholquinone, a chemically active intermediate, in the presence of oxygen to act as an electrophile to form catechol-catechol or catechol-amine/thiol adducts. To date, catechol cross-linking chemistry to fabricate hydrogels has been mostly performed at room temperature. Herein, we report large increases in catechol cross-linking reaction kinetics by the freeze-thawing process. The formation of ice crystals during freezing steps spatially condenses catechol-containing polymers into nearly frozen (yet unfrozen) regions, resulting in decreases in the polymeric chain distances. This environment allows great increases in catechol cross-linking kinetics, a phenomenon that can also occur during thawing steps. The increased cross-linking rate and spatial condensation in the cryogels provide unique wall and pore structures, which result in elastic, spongelike hydrogels. The moduli of the cryogels prepared by glycol-chitosan-catechol (g-chitosan-c) were improved by 3-6-fold compared to room temperature-cured conventional hydrogels, and the degree of improvement increased depending on the freezing time and the number of freeze-thawing cycles. Unlike typical cell encapsulations before cross-linking, which have often been a source of cytotoxicity, the macroporosity of cryogels allows nontoxic cell seeding with ease. This research offers a new way to utilize catechol cross-linking chemistry by freeze-thawing processes to simultaneously regulate mechanical strength and porous structures in catechol-containing hydrogels.
Publisher
AMER CHEMICAL SOC
Issue Date
2021-09
Language
English
Article Type
Article
Citation

ACS BIOMATERIALS SCIENCE & ENGINEERING, v.7, no.9, pp.4318 - 4329

ISSN
2373-9878
DOI
10.1021/acsbiomaterials.0c01767
URI
http://hdl.handle.net/10203/288130
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0