Coherent Many-Body Spin Dynamics in a Long-Range Interacting Ising Chain

Cited 177 time in webofscience Cited 0 time in scopus
  • Hit : 219
  • Download : 0
Coherent many-body quantum dynamics lies at the heart of quantum simulation and quantum computation. Both require coherent evolution in the exponentially large Hilbert space of an interacting many-body system. To date, trapped ions have defined the state of the art in terms of achievable coherence times in interacting spin chains. Here, we establish an alternative platform by reporting on the observation of coherent, fully interaction-driven quantum revivals of the magnetization in Rydberg-dressed Ising spin chains of atoms trapped in an optical lattice. We identify partialmany-body revivals at up to about ten times the characteristic time scale set by the interactions. At the same time, single-site-resolved correlation measurements link the magnetization dynamics with interspin correlations appearing at different distances during the evolution. These results mark an enabling step towards the implementation of Rydberg-atom-based quantum annealers, quantum simulations of higher-dimensional complex magnetic Hamiltonians, and itinerant long-range interacting quantum matter.
Publisher
AMER PHYSICAL SOC
Issue Date
2017-12
Language
English
Article Type
Article
Citation

PHYSICAL REVIEW X, v.7, no.4

ISSN
2160-3308
DOI
10.1103/physrevx.7.041063
URI
http://hdl.handle.net/10203/287697
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 177 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0