A Stealthy Location Identification Attack Exploiting Carrier Aggregation in Cellular Networks

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 199
  • Download : 0
We present the SLIC that achieves fine-grained location tracking(e.g., finding indoor walking paths) of targeted cellular user devices in a passive manner. The attack exploits a new side channel in modern cellular systems through a universally available feature called carrier aggregation (CA). CA enables higher cellular data rates by allowing multiple base stations on different carrier frequencies to concurrently transmit to a single user. We discover that a passive adversary can learn the side channel—namely, the number of actively transmitting base stations for any user of interest in the same macrocell. We then show that a time series of this side channel can constitute a highly unique fingerprint of a walking path, which can be used to identify the path taken by a target cellular user. We first demonstrate the collection of the new side channel and a small-scale path identification attack in an existing LTE-A network with up to three CA capability (i.e., three base stations can be coordinated for concurrent transmission), showing the feasibility of SLIC in the current cellular networks. We then emulate a near-future 5G network environment with up to nine CA capability in various multi-story buildings in our institution. SLIC shows up to 98.4% of path-identification accuracy among 100 different walking paths in a large office building. Through testing in various building structures, we confirm that the attack is effective in typical office building environments; e.g., corridors, open spaces. We present complete and partial countermeasures and discuss some practical cell deployment suggestions for 5G networks.
Publisher
USENIX
Issue Date
2021-08-11
Language
English
Citation

USENIX Security Symposium, pp.3899 - 3916

URI
http://hdl.handle.net/10203/287130
Appears in Collection
CS-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0