Legged Robot State Estimation with Dynamic Contact Event Information

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 39
  • Download : 0
This letter presents a state estimation algorithm for the legged robot by defining the problem as a Maximum A Posteriori (MAP) estimation problem and solving the problem with the Gauss-Newton algorithm. Moreover, marginalization by the Schur Complement method is adopted to make a fixed size problem. Each component of the cost function and its Jacobian are derived utilizing the SO(3) manifold structure, while we reparameterize the state with nominal state and variation to make linear algebra and vector calculus applied properly. Furthermore, a slip rejection method is proposed to reduce the erroneous effect of fault modeling of kinematics models. The proposed algorithm is verified by comparison with the Invariant Extended Kalman Filter (IEKF) in real robot experiments on various environments.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2021-10
Language
English
Article Type
Article
Citation

IEEE ROBOTICS AND AUTOMATION LETTERS, v.6, no.4, pp.6733 - 6740

ISSN
2377-3766
DOI
10.1109/LRA.2021.3093876
URI
http://hdl.handle.net/10203/287106
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0