Understanding potential-dependent competition between electrocatalytic dinitrogen and proton reduction reactions

Cited 68 time in webofscience Cited 0 time in scopus
  • Hit : 303
  • Download : 272
A key challenge to realizing practical electrochemical N-2 reduction reaction (NRR) is the decrease in the NRR activity before reaching the mass-transfer limit as overpotential increases. While the hydrogen evolution reaction (HER) has been suggested to be responsible for this phenomenon, the mechanistic origin has not been clearly explained. Herein, we investigate the potential-dependent competition between NRR and HER using the constant electrode potential model and microkinetic modeling. We find that the H coverage and N-2 coverage crossover leads to the premature decrease of NRR activity. The coverage crossover originates from the larger charge transfer in H+ adsorption than N-2 adsorption. The larger charge transfer in H+ adsorption, which potentially leads to the coverage crossover, is a general phenomenon seen in various heterogeneous catalysts, posing a fundamental challenge to realize practical electrochemical NRR. We suggest several strategies to overcome the challenge based on the present understandings. Practical electrochemical N-2 reduction reaction is challenged by competing side reactions. Here a combination of DFT and mikrokinetic modelling reveals the potential-dependent competition between electrochemical ammonia production and hydrogen evolution on a single-site iron catalyst embedded in N-doped graphene.
Publisher
NATURE RESEARCH
Issue Date
2021-07
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.12, no.1, pp.4353

ISSN
2041-1723
DOI
10.1038/s41467-021-24539-1
URI
http://hdl.handle.net/10203/287082
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
121101.pdf(1.84 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 68 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0