Detecting Group Anomalies in Tera-Scale Multi-Aspect Data via Dense-Subtensor Mining

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 35
  • Download : 0
How can we detect fraudulent lockstep behavior in large-scale multi-aspect data (i.e., tensors)? Can we detect it when data are too large to fit in memory or even on a disk? Past studies have shown that dense subtensors in real-world tensors (e.g., social media, Wikipedia, TCP dumps, etc.) signal anomalous or fraudulent behavior such as retweet boosting, bot activities, and network attacks. Thus, various approaches, including tensor decomposition and search, have been proposed for detecting dense subtensors rapidly and accurately. However, existing methods suffer from low accuracy, or they assume that tensors are small enough to fit in main memory, which is unrealistic in many real-world applications such as social media and web. To overcome these limitations, we propose D-Cube, a disk-based dense-subtensor detection method, which also can run in a distributed manner across multiple machines. Compared to state-of-the-art methods, D-Cube is (1) Memory Efficient: requires up to 1,561x less memory and handles 1,000x larger data (2.6TB), (2) Fast: up to 7x faster due to its near-linear scalability, (3) Provably Accurate: gives a guarantee on the densities of the detected subtensors, and (4) Effective: spotted network attacks from TCP dumps and synchronized behavior in rating data most accurately.
Publisher
FRONTIERS MEDIA SA
Issue Date
2021-04
Language
English
Article Type
Article
Citation

FRONTIERS IN BIG DATA, v.3

ISSN
2624-909X
DOI
10.3389/fdata.2020.594302
URI
http://hdl.handle.net/10203/286976
Appears in Collection
RIMS Journal Papers
Files in This Item
121055.pdf(0 B)Download

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0