Machine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application

Cited 61 time in webofscience Cited 0 time in scopus
  • Hit : 233
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorZhu, Jianxiongko
dc.contributor.authorCho, Minkyuko
dc.contributor.authorLi, Yutaoko
dc.contributor.authorHe, Tianyiyiko
dc.contributor.authorAhn, Junseongko
dc.contributor.authorPark, Jaehoko
dc.contributor.authorRen, Tian-Lingko
dc.contributor.authorLee, Chengkuoko
dc.contributor.authorPark, Inkyuko
dc.date.accessioned2021-07-29T02:50:06Z-
dc.date.available2021-07-29T02:50:06Z-
dc.date.created2021-07-29-
dc.date.created2021-07-29-
dc.date.issued2021-08-
dc.identifier.citationNANO ENERGY, v.86-
dc.identifier.issn2211-2855-
dc.identifier.urihttp://hdl.handle.net/10203/286893-
dc.description.abstractFlexible gas sensing is attracting more attention with the development of machine learning and Internet of Things (IoT). Herein, we report flexible and foldable high-performance hydrogen (H2) sensor on all textiles substratefabricated by inkjet & ndash;printing of reduced graphene oxide (rGO) and its application to wearable environmental sensing. The inkjet-printing process provides the advantages of the compatibility with various substrates, the capability of non-contact patterning and cost-effectiveness. The sensing mechanism is based on the catalytic effect of palladium (Pd) nanoparticles (NPs) on the wide bandgap rGO, which allows facile adsorption and desorption of the nonpolar H2 molecules. The graphene textile gas sensor (GT-GS) demonstrates about six times higher sensing response than the graphene polyimide membrane gas sensor due to the large surface area of the textile substrate. An analysis of the temperature influence on the GT-GS shows better H2 gas response at room temperature than at high temperature (e.g., 120 degrees C). In addition, with the machine learning-enabled technology and triboelectric-textile to power IoT (temperature and humidity for gas calibration), H2 is well identified for wearable applications with a robust mechanical performance (e.g., flexibility and foldability).-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleMachine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application-
dc.typeArticle-
dc.identifier.wosid000672566600003-
dc.identifier.scopusid2-s2.0-85104573600-
dc.type.rimsART-
dc.citation.volume86-
dc.citation.publicationnameNANO ENERGY-
dc.identifier.doi10.1016/j.nanoen.2021.106035-
dc.contributor.localauthorPark, Inkyu-
dc.contributor.nonIdAuthorZhu, Jianxiong-
dc.contributor.nonIdAuthorCho, Minkyu-
dc.contributor.nonIdAuthorLi, Yutao-
dc.contributor.nonIdAuthorHe, Tianyiyi-
dc.contributor.nonIdAuthorRen, Tian-Ling-
dc.contributor.nonIdAuthorLee, Chengkuo-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorInternet of things-
dc.subject.keywordAuthorGraphene sensor-
dc.subject.keywordAuthorExtremely deformation-
dc.subject.keywordAuthorInkjet-printing-
dc.subject.keywordPlusHYDROGEN SENSOR-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusNANOGENERATOR-
dc.subject.keywordPlusSENSITIVITY-
dc.subject.keywordPlusPALLADIUM-
dc.subject.keywordPlusELECTRODE-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 61 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0