High Facets on Nanowrinkled Cu via Chemical Vapor Deposition Graphene Growth for Efficient CO2 Reduction into Ethanol

Cited 44 time in webofscience Cited 0 time in scopus
  • Hit : 318
  • Download : 0
Achieving high electrochemical conversion of carbon dioxide (CO2) into valuable fuels and chemicals is one of the most promising directions to address environmental and energy challenges. Although several single-crystal based studies and simulation results have reported that rich in steps on Cu (100) surfaces are favorable to convert toward C-2 alcohol products, most studies are still stuck in low-index (100) facets or surface defect-derived low density of step-sites. In the present work, we report the high production of ethanol by synthesizing a wrinkled Cu catalyst with high facets via a chemical vapor deposition (CVD) graphene growth process. Under our approach, we used graphene as a guiding material to produce wrinkled Cu film for use as an electrocatalyst. The graphene-grown Cu films are not only mass-producible but composed of a high density of step-sites with high-facet atomic arrangements, including the (200) and (310) facets, which are difficult to synthesize using existing methods. The wrinkled Cu film with a unique atomic arrangement showed high ethanol selectivity, achieving 40% faradaic efficiency (FE) at -0.9 V vs reversible hydrogen electrode (RHE), one of the largest selectivity values reported thus far for a Cu-based CO2 conversion catalyst. The C-2 selectivity and productivity was 57% FE and -2.2 mA/cm(2) at -1.1 V vs RHE, respectively. Density functional theory (DFT) calculation results demonstrated that such a high ethanol productivity is mainly attributable to the (310) facet of the wrinkles, which feature a low C-C coupling barrier (0.5 eV) and a preferred reaction path toward ethanol among other products.
Publisher
AMER CHEMICAL SOC
Issue Date
2021-05
Language
English
Article Type
Article
Citation

ACS CATALYSIS, v.11, no.9, pp.5658 - 5665

ISSN
2155-5435
DOI
10.1021/acscatal.0c05263
URI
http://hdl.handle.net/10203/285858
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 44 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0