rf-Signal-induced heating effects in single-electron pumps composed of gate-tunable quantum dots

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 57
  • Download : 0
From both a fundamental viewpoint and the perspective of wave-function engineering of an electron pumped by single-electron sources, it is important to understand how an electron gains energy while propagating along a time-dependent region in a quantum Hall channel. In our previous work, we experimentally observed that, when the electron travels through the time-dependent region before entering the pump, the pump current becomes substantially larger than the quantized value. We here present the results of a theoretical and experimental investigation of the mechanism underlying the heating of electrons traveling through a region of time-dependent potential induced by an rf signal. Using the Floquet scattering theory, we describe the energy distribution of the heated electrons, whose effective temperature can be substantially larger than the cryostat temperature. The behavior of the measured currents when the barrier height and the radio-frequency power are varied is in good qualitative agreement with the theoretical predictions.
Publisher
AMER PHYSICAL SOC
Issue Date
2021-05
Language
English
Article Type
Article
Citation

PHYSICAL REVIEW B, v.103, no.20, pp.205422

ISSN
2469-9950
DOI
10.1103/PhysRevB.103.205422
URI
http://hdl.handle.net/10203/285849
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0