Equitable partition of planar graphs

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 94
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Ringiko
dc.contributor.authorOum, Sang-ilko
dc.contributor.authorZhang, Xinko
dc.date.accessioned2021-05-18T00:30:15Z-
dc.date.available2021-05-18T00:30:15Z-
dc.date.created2021-05-17-
dc.date.created2021-05-17-
dc.date.issued2021-06-
dc.identifier.citationDISCRETE MATHEMATICS, v.344, no.6-
dc.identifier.issn0012-365X-
dc.identifier.urihttp://hdl.handle.net/10203/285258-
dc.description.abstractAn equitable k-partition of a graph G is a collection of induced subgraphs (G[V-1], G[V-2], ... , G[V-k]) of G such that (V-1, V-2, ... , V-k) is a partition of V(G) and -1 <= |V-i| - |V-j| <= 1 for all 1 <= i < j <= k. We prove that every planar graph admits an equitable 2-partition into 3-degenerate graphs, an equitable 3-partition into 2-degenerate graphs, and an equitable 3-partition into two forests and one graph. (c) 2021 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleEquitable partition of planar graphs-
dc.typeArticle-
dc.identifier.wosid000640570000023-
dc.identifier.scopusid2-s2.0-85101660343-
dc.type.rimsART-
dc.citation.volume344-
dc.citation.issue6-
dc.citation.publicationnameDISCRETE MATHEMATICS-
dc.identifier.doi10.1016/j.disc.2021.112351-
dc.contributor.localauthorOum, Sang-il-
dc.contributor.nonIdAuthorKim, Ringi-
dc.contributor.nonIdAuthorZhang, Xin-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorInduced forest-
dc.subject.keywordAuthorDegenerate graph-
dc.subject.keywordAuthorEquitable partition-
dc.subject.keywordAuthorPlanar graph-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0