(A) shape optimization problem of the first mixed Steklov-Dirichlet eigenvalue = 첫번째 혼합 스테클로프-디리클레 고유값에 대한 형상최적화 문제

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 30
  • Download : 0
We consider a shape optimization problem for the first mixed Steklov-Dirichlet eigenvalues of domains bounded by two balls in two-point homogeneous space. We show that the maximizer is obtained when the two balls are concentric using a geometric proof which is motivated by Newton's shell theorem.
Advisors
Suh, Dong Youpresearcher서동엽researcher
Description
한국과학기술원 :수리과학과,
Publisher
한국과학기술원
Issue Date
2020
Identifier
325007
Language
eng
Description

학위논문(박사) - 한국과학기술원 : 수리과학과, 2020.2,[iii, 26 p. :]

Keywords

shape optimization problem▼atwo-point homogeneous space▼aSteklov eigenvalue▼aNewton's shell theorem▼atrigonometry; 형상최적화 문제▼a두점동질공간▼a스테클로프 고유값▼a뉴턴의 껍질정리▼a삼각법

URI
http://hdl.handle.net/10203/283580
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=907851&flag=dissertation
Appears in Collection
MA-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0