Tubular MoSSe/carbon nanotube electrodes for hybrid-ion capacitors

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 68
  • Download : 0
We report the tubular shape of molybdenum sulfide selenide (MoSSe) alloy on the carbon nanotubes (CNTs) as lithium (Li) storage materials. Two to five layers of MoSSe alloy have an interlayer spacing of similar to 6.6 A? and coaxially coat the CNT. After Li ion is intercalated to the MoSSe layers, Li2S, Li2Se, and metallic Mo nanoparticles are irreversibly deposited on the CNT electrodes by a chemical conversion process. Galvanostatic cycling tests perform Li2S/Li2Se faradaic reaction at similar to 2.2 V vs. Li/Li+ and capacitive processes below similar to 1.3 V arising from physical adsorption of Li+ on Mo, Li2S, and Li2Se nanoparticles, and electrolyte decomposition. As a result, tubular MoSSe/CNT electrodes exhibit stable cyclability for over 200 cycles, the capacity of 663 mAh g(-1), and excellent rate capability that is two-fold greater at 20 A g & minus;1 than that of the MoS2 sheet partially wrapping the CNT. It is attributed to stable Li2S/Li2Se redox reaction without any dissolution of polysulfides/polyselenides, respectively, low charge-transfer resistance, and retardation of electrolyte decomposition. These findings suggest that the tubular MoSSe/CNT nanocomposites act as promising electrodes for hybrid-ion capacitors. (C) 2021 Elsevier Ltd. All rights reserved.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2021-04
Language
English
Article Type
Article
Citation

ELECTROCHIMICA ACTA, v.374

ISSN
0013-4686
DOI
10.1016/j.electacta.2021.137971
URI
http://hdl.handle.net/10203/282468
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0