Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation

Cited 275 time in webofscience Cited 0 time in scopus
  • Hit : 836
  • Download : 0
Rationally manipulating the in situ formed catalytically active surface of catalysts remains a tremendous challenge for a highly efficient water electrolysis. Here we present a cationic redox-tuning method to modulate in situ catalyst leaching and to redirect the dynamic surface restructuring of layered LiCoO2-xClx (x= 0, 0.1 or 0.2), for the electrochemical oxygen evolution reaction (OER). Chlorine doping lowered the potential to trigger in situ cobalt oxidation and lithium leaching, which induced the surface of LiCoO1.8Cl0.2 to transform into a self-terminated amorphous (oxy)hydroxide phase during the OER. In contrast, Cl-free LiCoO2 required higher electrochemical potentials to initiate the in situ surface reconstruction to spinel-type Li1 +/- xCo2O4 and longer cycles to stabilize it. Surface-restructured LiCoO1.8Cl0.2 outperformed many state-of-the-art OER catalysts and demonstrated remarkable stability. This work makes a stride in modulating surface restructuring and in designing superior OER electrocatalysts via manipulating the in situ catalyst leaching.
Publisher
NATURE RESEARCH
Issue Date
2021-03
Language
English
Article Type
Article
Citation

NATURE CATALYSIS, v.4, no.3, pp.212 - 222

ISSN
2520-1158
DOI
10.1038/s41929-021-00578-1
URI
http://hdl.handle.net/10203/282395
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 275 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0