A Flash-Induced Robust Cu Electrode on Glass Substrates and Its Application for Thin-Film mu LEDs

Cited 16 time in webofscience Cited 0 time in scopus
  • Hit : 919
  • Download : 0
A robust Cu conductor on a glass substrate for thin-film mu LEDs using the flash-induced chemical/physical interlocking between Cu and glass is reported. During millisecond light irradiation, CuO nanoparticles (NPs) on the display substrate are transformed into a conductive Cu film by reduction and sintering. At the same time, intensive heating at the boundary of CuO NPs and glass chemically induces the formation of an ultrathin Cu2O interlayer within the Cu/glass interface for strong adhesion. Cu nanointerlocking occurs by transient glass softening and interface fluctuation to increase the contact area. Owing to these flash-induced interfacial interactions, the flash-activated Cu electrode exhibits an adhesion energy of 10 J m(-2), which is five times higher than that of vacuum-deposited Cu. An AlGaInP thin-film vertical mu LED (VLED) forms an electrical interconnection with the flash-induced Cu electrode via an ACF bonding process, resulting in a high optical power density of 41 mW mm(-2). The Cu conductor enables reliable VLED operation regardless of harsh thermal stress and moisture infiltration under a high-temperature storage test, temperature humidity test, and thermal shock test. 50 x 50 VLED arrays transferred onto the flash-induced robust Cu electrode show high illumination yield and uniform distribution of forward voltage, peak wavelength, and device temperature.
Publisher
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Issue Date
2021-04
Language
English
Article Type
Article
Citation

Advanced Materials, v.33, no.13, pp.2007186

ISSN
0935-9648
DOI
10.1002/adma.202007186
URI
http://hdl.handle.net/10203/282324
Appears in Collection
PH-Journal Papers(저널논문)ME-Journal Papers(저널논문)MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0