HASPO: Harmony Search-Based Parameter Optimization for Just-in-Time Software Defect Prediction in Maritime Software

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 79
  • Download : 0
Software is playing the most important role in recent vehicle innovations, and consequently the amount of software has rapidly grown in recent decades. The safety-critical nature of ships, one sort of vehicle, makes software quality assurance (SQA) a fundamental prerequisite. Just-in-time software defect prediction (JIT-SDP) aims to conduct software defect prediction (SDP) on commit-level code changes to achieve effective SQA resource allocation. The first case study of SDP in the maritime domain reported feasible prediction performance. However, we still consider that the prediction model has room for improvement since the parameters of the model are not optimized yet. Harmony search (HS) is a widely used music-inspired meta-heuristic optimization algorithm. In this article, we demonstrated that JIT-SDP can produce better performance of prediction by applying HS-based parameter optimization with balanced fitness value. Using two real-world datasets from the maritime software project, we obtained an optimized model that meets the performance criterion beyond the baseline of a previous case study throughout various defect to non-defect class imbalance ratio of datasets. Experiments with open source software also showed better recall for all datasets despite the fact that we considered balance as a performance index. HS-based parameter optimized JIT-SDP can be applied to the maritime domain software with a high class imbalance ratio. Finally, we expect that our research can be extended to improve the performance of JIT-SDP not only in maritime domain software but also in open source software.
Publisher
MDPI
Issue Date
2021-03
Language
English
Article Type
Article
Citation

APPLIED SCIENCES-BASEL, v.11, no.5

ISSN
2076-3417
DOI
10.3390/app11052002
URI
http://hdl.handle.net/10203/282292
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0