Color three-dimensional imaging based on patterned illumination using a negative pinhole array

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 64
  • Download : 0
Reflectance confocal microscopy is widely used for non-destructive optical three-dimensional (3D) imaging. In confocal microscopy, a stack of sequential two-dimensional (2D) images with respect to the axial position is typically needed to reconstruct a 3D image. As a result, in conventional confocal microscopy, acquisition speed is often limited by the rate of mechanical scanning in both the transverse and axial directions. We previously reported a high-speed parallel confocal detection method using a pinhole array for color 3D imaging without any mechanical scanners. Here, we report a high-speed color 3D imaging method based on patterned illumination employing a negative pinhole array, whose optical characteristics are the reverse of the conventional pinhole array for transmitting light. The negative pinhole array solves the inherent limitation of a conventional pinhole array, i.e., low transmittance, meaning brighter color images with abundant color information can be acquired. We also propose a 3D image processing algorithm based on the 2D cross-correlation between the acquired image and filtering masks, to produce an axial response. By using four-different filtering masks, we were able to increase the sampling points in calculation of height and enhance the lateral resolution of the color acquisition by a factor of four. The feasibility of high-speed non-contact color 3D measurement with the improved lateral resolution and brightness provided by the negative pinhole array was demonstrated by imaging various specimens. We anticipate that this high-speed color 3D measurement technology with negative pinhole array will be a useful tool in a variety of fields where rapid and accurate non-contact measurement are required, such as industrial inspection and dental scanning. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Issue Date
Article Type

OPTICS EXPRESS, v.29, no.5, pp.6509 - 6522

Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.


  • mendeley


rss_1.0 rss_2.0 atom_1.0