Strain effect on magnetic-exchange-induced phonon splitting in NiO films

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 122
  • Download : 0
NiO thin films with various strains were grown on SrTiO3(STO) and MgO substrates using a pulsed laser deposition technique. The films were characterized using an x-ray diffraction, atomic force microscopy, and infrared reflectance spectroscopy. The films grown on STO (001) substrate show a compressive in-plane strain which increases as the film thickness is reduced resulting in an increase of the NiO phonon frequency. On the other hand, a tensile strain was detected in the NiO film grown on MgO (001) substrate which induces a softening of the phonon frequency. Overall, the variation of in-plane strain from -0.36% (compressive) to 0.48% (tensile) yields the decrease of the phonon frequency from 409.6 cm(-1)to 377.5 cm(-1)which occurs due to the similar to 1% change of interatomic distances. The magnetic exchange-driven phonon splitting Delta omega in three different samples, with relaxed (i.e. zero) strain, 0.36% compressive strain and 0.48% tensile strain, was measured as a function of temperature. The Delta omega increases on cooling in NiO relaxed film as in the previously published work on a bulk crystal. The splitting increases on cooling also in 0.48% tensile strained film, but Delta omega is systematically 3-4 cm(-1)smaller than in relaxed film. Since the phonon splitting is proportional to the non-dominant magnetic exchange interactionJ(1), the reduction of phonon splitting in tensile-strained film was explained by a diminishing ofJ(1)with lattice expansion. Increase of Delta omega on cooling can be also explained by rising ofJ(1)with reduced temperature.
Publisher
IOP PUBLISHING LTD
Issue Date
2020-09
Language
English
Article Type
Article
Citation

JOURNAL OF PHYSICS-CONDENSED MATTER, v.32, no.40

ISSN
0953-8984
DOI
10.1088/1361-648X/ab9f08
URI
http://hdl.handle.net/10203/281911
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0