Optimization of accurate resist kernels through convolutional neural network

Cited 0 time in webofscience Cited 1 time in scopus
  • Hit : 251
  • Download : 0
Accurate and fast lithography model is necessary for computational lithography applications such as optical proximity correction (OPC) and lithography rule check. In lithography model, optical model calculates image intensity followed by resist model that outputs a resist contour. Resist model is an empirical model, in which images are convolved with resist kernels and their weighted sum is used to derive a resist model signal that is compared with some threshold. Conventional resist model use a simple form of resist kernels such as Gaussian kernels, therefore it requires many kernels to achieve high accuracy. We propose to use free-form resist kernels. Resist model has the same structure as convolutional neural network (CNN), thus, we represent resist model with free-form kernels in CNN and train the network. To avoid overfitting of the proposed model, we initialize the model with conventional Gaussian kernels. Training data is carefully selected so that resist contour is accurately predicted. A conventional resist model with 9 Gaussian kernels is converted into a model with 2 free-form kernels, which achieves 35% faster lithography simulation. In addition, simulation accuracy in CD is improved by 15%.
Publisher
SPIE
Issue Date
2021-02-21
Language
English
Citation

Conference on Optical Microlithography XXXIV

ISSN
0277-786X
DOI
10.1117/12.2583599
URI
http://hdl.handle.net/10203/281679
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0