The reverse Kakeya problem

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 83
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorBae, Sang Wonko
dc.contributor.authorCabello, Sergioko
dc.contributor.authorCheong, Otfriedko
dc.contributor.authorChoi, Yoonsungko
dc.contributor.authorStehn, Fabianko
dc.contributor.authorYoon, Sang Dukko
dc.date.accessioned2021-03-18T01:10:17Z-
dc.date.available2021-03-18T01:10:17Z-
dc.date.created2021-03-18-
dc.date.created2021-03-18-
dc.date.created2021-03-18-
dc.date.issued2021-01-
dc.identifier.citationADVANCES IN GEOMETRY, v.21, no.1, pp.75 - 84-
dc.identifier.issn1615-715X-
dc.identifier.urihttp://hdl.handle.net/10203/281664-
dc.description.abstractWe prove a generalization of Pal's conjecture from 1921: if a convex shape P can be placed in any orientation inside a convex shape Q in the plane, then P can also be turned continuously through 360 degrees inside Q. We also prove a lower bound of Omega(mn(2)) on the number of combinatorially distinct maximal placements of a convex m-gon P in a convex n-gon Q. This matches the upper bound proven by Agarwal et al.-
dc.languageEnglish-
dc.publisherWALTER DE GRUYTER GMBH-
dc.titleThe reverse Kakeya problem-
dc.typeArticle-
dc.identifier.wosid000611193600007-
dc.identifier.scopusid2-s2.0-85100056833-
dc.type.rimsART-
dc.citation.volume21-
dc.citation.issue1-
dc.citation.beginningpage75-
dc.citation.endingpage84-
dc.citation.publicationnameADVANCES IN GEOMETRY-
dc.identifier.doi10.1515/advgeom-2020-0030-
dc.contributor.localauthorCheong, Otfried-
dc.contributor.nonIdAuthorBae, Sang Won-
dc.contributor.nonIdAuthorCabello, Sergio-
dc.contributor.nonIdAuthorStehn, Fabian-
dc.contributor.nonIdAuthorYoon, Sang Duk-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorKakeya problem-
dc.subject.keywordAuthorconvex polygon-
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0