Solid-State Organic Electrolyte-Gated Transistors Based on Doping-Controlled Polymer Composites with a Confined Two-Dimensional Channel in Dry Conditions

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 52
  • Download : 0
We report comprehensive and comparative studies on chemical and electrochemical controls of doping characteristics of various poly(3,4-ethylenedioxythiophene) (PEDOT) composites complexed with sulfonates. Chemical treatment of PEDOT composites was conducted with a dedoping agent, tetrakis(dimethylamino)ethylene (TDAE), resulting in the changes in conformation and bulk charge-carrier density. Electrochemical control of doping states was done with a solid-state ionogel based on an ionic liquid dispersed in a polymer matrix. With this approach, we can fabricate solid-state organic electrolyte-gated transistors (OEGTs) with a large current modulation, a high mobility of holes, and a low driving voltage. Our OEGTs are operational in a dry environment and, surprisingly, form the two-dimensional channel of the interfacial charge carriers modulating the conductance under gate bias, unlike conventional liquid-based OEGTs. The charge-carrier mobility and the on-to-off current ratio reach up to similar to 7 cm(2) V-1 s(-1) and over 10(4), respectively, from the chemically dedoped PEDOT composites. The ionogel-based gating of the layer of TDAE-treated PEDOT composites induces a reversible transition between a highly doped bipolaronic state and neutral/polaronic states, as revealed by the absorption profiles under gate bias. We also demonstrate in-plane OEGTs, in which the dedoped channel and the conductive source/drain electrodes are made of a single PEDOT composite layer.
Publisher
AMER CHEMICAL SOC
Issue Date
2021-01
Language
English
Article Type
Article
Citation

ACS APPLIED MATERIALS & INTERFACES, v.13, no.1, pp.1065 - 1075

ISSN
1944-8244
DOI
10.1021/acsami.0c19006
URI
http://hdl.handle.net/10203/281634
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0