A Wearable Soft Tactile Actuator With High Output Force for Fingertip Interaction

Cited 20 time in webofscience Cited 7 time in scopus
  • Hit : 426
  • Download : 0
This paper reports a soft fingertip-mountable tactile actuator based on a Dielectric Elastomer Actuator (DEA), which exhibits high output force over a wide frequency range with a lightweight and soft structure. DEA is a soft actuator characterized by its large area strain, fast response speed, and high specific energy density. The proposed soft tactile actuator is constructed of a multi-layered conical DEA structure. This design has safety benefits because it isolates the high voltage components from the contact point. In this paper, the resonance frequency of the tactile actuator was designed to be at 250 Hz to maximize vibrotactile stimulation. In addition, the geometric design parameters of the soft tactile actuator were optimized by conducting the simulations and the experiments. Based on these efforts, the proposed actuator produces a high output force of 8.48 N at the resonance frequency, with a maximum displacement of 0.46 mm. Our wearable prototype was an entirely soft haptic system, which exhibits high output force, as well as flexibility and conformity with a total weight of 2.6 g.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2021-02
Language
English
Article Type
Article
Citation

IEEE ACCESS, v.9, pp.30206 - 30215

ISSN
2169-3536
DOI
10.1109/access.2021.3058979
URI
http://hdl.handle.net/10203/281574
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 20 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0