A Reduced Crouzeix-Raviart Immersed Finite Element Method for Elasticity Problems with Interfaces

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 67
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJo, Gwanghyunko
dc.contributor.authorKwak, Do Youngko
dc.date.accessioned2021-03-04T09:10:07Z-
dc.date.available2021-03-04T09:10:07Z-
dc.date.created2021-03-04-
dc.date.created2021-03-04-
dc.date.created2021-03-04-
dc.date.issued2020-07-
dc.identifier.citationCOMPUTATIONAL METHODS IN APPLIED MATHEMATICS, v.20, no.3, pp.501 - 516-
dc.identifier.issn1609-4840-
dc.identifier.urihttp://hdl.handle.net/10203/281223-
dc.description.abstractThe purpose of this paper is to develop a reduced Crouzeix-Raviart immersed finite element method (RCRIFEM) for two-dimensional elasticity problems with interface, which is based on the Kouhia-Stenberg finite element method (Kouhia et al. 1995) and Crouzeix-Raviart IFEM (CRIFEM) (Kwak et al. 2017). We use a P-1-conforming like element for one of the components of the displacement vector, and a P-1-nonconforming like element for the other component. The number of degrees of freedom of our scheme is reduced to two thirds of CRIFEM. Furthermore, we can choose penalty parameters independent of the Poisson ratio. One of the penalty parameters depends on Lame's second constant mu, and the other penalty parameter is independent of both mu and lambda. We prove the optimal order error estimates in piecewise H-1-norm, which is independent of the Poisson ratio. Numerical experiments show optimal order of convergence both in L-2 and piecewise H-1-norms for all problems including nearly incompressible cases.-
dc.languageEnglish-
dc.publisherWALTER DE GRUYTER GMBH-
dc.titleA Reduced Crouzeix-Raviart Immersed Finite Element Method for Elasticity Problems with Interfaces-
dc.typeArticle-
dc.identifier.wosid000544517400006-
dc.identifier.scopusid2-s2.0-85072646098-
dc.type.rimsART-
dc.citation.volume20-
dc.citation.issue3-
dc.citation.beginningpage501-
dc.citation.endingpage516-
dc.citation.publicationnameCOMPUTATIONAL METHODS IN APPLIED MATHEMATICS-
dc.identifier.doi10.1515/cmam-2019-0046-
dc.contributor.localauthorKwak, Do Young-
dc.contributor.nonIdAuthorJo, Gwanghyun-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorImmersed Finite Element Method-
dc.subject.keywordAuthorElasticity Equation With Interface-
dc.subject.keywordAuthorKouhia-Stenberg Element-
dc.subject.keywordAuthorNearly Incompressible-
dc.subject.keywordAuthorLocking Free-
dc.subject.keywordAuthorKorn&apos-
dc.subject.keywordAuthors Inequality-
dc.subject.keywordPlusINCOMPRESSIBLE ELASTICITY-
dc.subject.keywordPlusDISCONTINUOUS GALERKIN-
dc.subject.keywordPlusCRACK-GROWTH-
dc.subject.keywordPlusEQUATIONS-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0