Prospects for Additive Manufacturing in Contact Lens Devices

Cited 25 time in webofscience Cited 17 time in scopus
  • Hit : 275
  • Download : 0
Additive manufacturing (3D printing) has the ability to architect structures at microscale, giving rise to the development of functional contact lenses (CLs) with inbuilt sensing capabilities. 3D printing technology enables fabrication of CLs without surface geometry restrictions. Spherical, nonspherical, symmetric, and asymmetric lenses can be manufactured in an integrated production process. Advantages of 3D printing over conventional techniques include fast and easy production, one-step manufacturing, and no post processing such as grinding or polishing. In addition, and most significantly, 3D printing can create chambers within the wall of the lenses by taking the advantage of computer-aided modeling and layer-by-layer deposition of the materials. These inbuilt chambers can be used for loading drugs and sensing elements. The computer-aided design modeling can allow for manufacturing of patient-specific CLs. This article focuses on the 3D-printing approaches and the challenges faced in fabricating CLs. 3D-printing technology as a technique for manufacturing of CLs is discussed, in addition to the manufacturing challenges and the possible solutions to overcome the obstacles.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2021-01
Language
English
Article Type
Review
Citation

ADVANCED ENGINEERING MATERIALS, v.23, no.1, pp.2000941

ISSN
1438-1656
DOI
10.1002/adem.202000941
URI
http://hdl.handle.net/10203/281218
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 25 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0