EGR1/GADD45 alpha Activation by ROS of Non-Thermal Plasma Mediates Cell Death in Thyroid Carcinoma

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 88
  • Download : 0
Simple Summary Recent studies have identified new anti-cancer mechanisms of nonthermal plasma (NTP) in several cancers. However, the molecular mechanisms underlying its therapeutic effect on thyroid cancer have not been elucidated. The objective of this study was to understand the anticancer effects of NTP-activated medium (NTPAM) on thyroid cancer cells and elucidate the signaling mechanisms responsible for NTPAM-induced thyroid cancer cell death. (1) Background: Nonthermal plasma (NTP) induces cell death in various types of cancer cells, providing a promising alternative treatment strategy. Although recent studies have identified new mechanisms of NTP in several cancers, the molecular mechanisms underlying its therapeutic effect on thyroid cancer (THCA) have not been elucidated. (2) Methods: To investigate the mechanism of NTP-induced cell death, THCA cell lines were treated with NTP-activated medium -(NTPAM), and gene expression profiles were evaluated using RNA sequencing. (3) Results: NTPAM upregulated the gene expression of early growth response 1 (EGR1). NTPAM-induced THCA cell death was enhanced by EGR1 overexpression, whereas EGR1 small interfering RNA had the opposite effect. NTPAM-derived reactive oxygen species (ROS) affected EGR1 expression and apoptotic cell death in THCA. NTPAM also induced the gene expression of growth arrest and regulation of DNA damage-inducible 45 alpha (GADD45A) gene, and EGR1 regulated GADD45A through direct binding to its promoter. In xenograft in vivo tumor models, NTPAM inhibited tumor progression of THCA by increasing EGR1 levels. (4) Conclusions: Our findings suggest that NTPAM induces apoptotic cell death in THCA through a novel mechanism by which NTPAM-induced ROS activates EGR1/GADD45 alpha signaling. Furthermore, our data provide evidence that the regulation of the EGR1/GADD45 alpha axis can be a novel strategy for the treatment of THCA.
Issue Date
Article Type

CANCERS, v.13, no.2, pp.351

Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button


  • mendeley


rss_1.0 rss_2.0 atom_1.0