Reduced texture approach for crystal plasticity finite element method toward macroscopic engineering applications

Cited 1 time in webofscience Cited 1 time in scopus
  • Hit : 127
  • Download : 0
In Crystal Plasticity Finite Element Method (CPFEM), normally over thousands Euler angles are used. It leads to high computational cost. To efficiently solve this problem, a reduced texture approach was implemented through User MATerial Interface (UMAT). Specific material parameters including the texture information were calibrated to characterize anisotropic behavior. For the calibration, it is used the stress-strain curves and r-values along the rolling, diagonal, and transverse directions. In this study, AA 2090-T3 was modelled with the reduced texture approach by characterizing 12 parameters. Single element simulation result from the reduced texture approach shows a good agreement with the experimental data. In addition, a deep drawing simulation for AA 2090-T3 was performed. The simulation results from the reduced texture approach were compared with those from the advanced constitutive models such as Yld2000-2d and Yld2004-18p in terms of accuracy and time efficiency. It shows a great potential that the reduced texture approach based on the crystal plasticity theory could be applied to macroscopic engineering problems as an alternative solution for continuum level advanced constitutive models.
Publisher
IOP Publishing
Issue Date
2020-10
Language
English
Citation

39th International Deep-Drawing Research Group Conference, IDDRG 2020

ISSN
1757-8981
DOI
10.1088/1757-899x/967/1/012071
URI
http://hdl.handle.net/10203/280576
Appears in Collection
ME-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0