Structural basis for transcription complex disruption by the Mfd translocase

Cited 28 time in webofscience Cited 18 time in scopus
  • Hit : 439
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKang, Jin Youngko
dc.contributor.authorLlewellyn, Elizako
dc.contributor.authorChen, Jamesko
dc.contributor.authorOlinares, Paul D Bko
dc.contributor.authorBrewer, Joshuako
dc.contributor.authorChait, Brian Tko
dc.contributor.authorCampbell, Elizabeth Ako
dc.contributor.authorDarst, Seth Ako
dc.date.accessioned2021-02-03T08:30:05Z-
dc.date.available2021-02-03T08:30:05Z-
dc.date.created2021-02-03-
dc.date.created2021-02-03-
dc.date.created2021-02-03-
dc.date.created2021-02-03-
dc.date.created2021-02-03-
dc.date.issued2021-01-
dc.identifier.citationELIFE, v.10-
dc.identifier.issn2050-084X-
dc.identifier.urihttp://hdl.handle.net/10203/280518-
dc.description.abstractTranscription-coupled repair (TCR) is a sub-pathway of nucleotide excision repair (NER) that preferentially removes lesions from the template-strand (t-strand) that stall RNA polymerase (RNAP) elongation complexes (EC). Mfd mediates TCR in bacteria by removing the stalled RNAP concealing the lesion and recruiting Uvr(A)BC. We used cryo-electron microscopy to visualize Mfd engaging with a stalled EC and attempting to dislodge the RNAP. We visualized seven distinct Mfd-EC complexes in both ATP and ADP-bound states. The structures explain how Mfd is remodeled from its repressed conformation, how the UvrA-interacting surface of Mfd is hidden during most of the remodeling process to prevent premature engagement with the NER pathway, how Mfd alters the RNAP conformation to facilitate disassembly, and how Mfd forms a processive translocation complex after dislodging the RNAP. Our results reveal an elaborate mechanism for how Mfd kinetically discriminates paused from stalled ECs and disassembles stalled ECs to initiate TCR.-
dc.languageEnglish-
dc.publisherELIFE SCIENCES PUBLICATIONS LTD-
dc.titleStructural basis for transcription complex disruption by the Mfd translocase-
dc.typeArticle-
dc.identifier.wosid000618527400001-
dc.identifier.scopusid2-s2.0-85100511625-
dc.type.rimsART-
dc.citation.volume10-
dc.citation.publicationnameELIFE-
dc.identifier.doi10.7554/elife.62117-
dc.contributor.localauthorKang, Jin Young-
dc.contributor.nonIdAuthorLlewellyn, Eliza-
dc.contributor.nonIdAuthorChen, James-
dc.contributor.nonIdAuthorOlinares, Paul D B-
dc.contributor.nonIdAuthorBrewer, Joshua-
dc.contributor.nonIdAuthorChait, Brian T-
dc.contributor.nonIdAuthorCampbell, Elizabeth A-
dc.contributor.nonIdAuthorDarst, Seth A-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusREPAIR COUPLING FACTOR-
dc.subject.keywordPlusNUCLEOTIDE EXCISION-REPAIR-
dc.subject.keywordPlusMUTATION FREQUENCY DECLINE-
dc.subject.keywordPlusSTRAND-SPECIFIC REPAIR-
dc.subject.keywordPlusESCHERICHIA-COLI MFD-
dc.subject.keywordPlusRNA-POLYMERASE-
dc.subject.keywordPlusDNA-REPAIR-
dc.subject.keywordPlusCRYSTAL-STRUCTURE-
dc.subject.keywordPlusIN-VITRO-
dc.subject.keywordPlusBACTERIAL-
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 28 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0