Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer

Cited 130 time in webofscience Cited 84 time in scopus
  • Hit : 239
  • Download : 0
A facile and low-temperature process to prepare planar perovskite solar cells (PSCs) has led to considerable progress in flexible solar cells toward high throughput production based on a roll-to-roll process. However, the performance of planar PSCs is still lower than that of mesoscopic PSCs using a high temperature process. Here, we report a new concept of a low temperature processed porous planar electron transport layer (ETL) inspired by a mesoporous structure for improving the performance of flexible devices. The structurally and energetically designed porous planar ETL induced the formation of a high quality perovskite and a preferred band alignment, resulting in improved charge collection efficiency in a fabricated device. Through the porous planar ETL, we achieved a power conversion efficiency (PCE) of 20.7% with a certified efficiency of 19.9% on a flexible substrate, which is the highest PCE reported to date. In addition, for the first time, we succeed in fabricating a large area flexible module with the porous planar ETL, demonstrating a PCE of 15.5%, 12.9% and 11.8% on an aperture area of 100 cm(2), 225 cm(2) and 400 cm(2), respectively. We believe that this strategy will pave a new way for realizing highly efficient flexible PSCs.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2020-12
Language
English
Article Type
Article
Citation

ENERGY & ENVIRONMENTAL SCIENCE, v.13, no.12, pp.4854 - 4861

ISSN
1754-5692
DOI
10.1039/d0ee02164d
URI
http://hdl.handle.net/10203/280066
Appears in Collection
ME-Journal Papers(저널논문)CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 130 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0