Photonic Janus Balls with Controlled Magnetic Moment and Density Asymmetry

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 84
  • Download : 0
Colloidal crystals show structural colors through wavelength-selective diffraction at photonic stopbands. Here, we design photonic Janus balls with a controlled magnetic moment for programmable structural color switching. The Janus balls are produced from microfluidically produced paired drops of two distinct photocurable resins. The lighter resin contains magnetic nanoparticles and carbon black, whereas heavier one contains silica particles at a high volume fraction. The paired drops spontaneously align vertically due to the density asymmetry. The magnetic moment is assigned in the vertically aligned drops by aligning magnetic nanoparticles with an external field and capturing them through photopolymerization. Silica particles in the heavier compartment spontaneously form crystalline arrays due to interparticle repulsion, developing structural colors. The resulting photonic Janus balls vertically align without an external field, like a roly-poly toy, so that carbon-black-laden compartments face upward. With an external magnetic field, the Janus balls align their magnetic moment to the field and display structural colors. Importantly, the direction of the magnetic moment is set by the direction of the external field during photopolymerization, which enables the simultaneous manipulation of orientations of distinct photonic Janus balls in a programmed manner. These photonic Janus balls are potentially useful as active color inks for anti-counterfeiting tags. © 2020 American Chemical Society.
Publisher
AMER CHEMICAL SOC
Issue Date
2020-11
Language
English
Article Type
Article
Citation

ACS NANO, v.14, no.11, pp.15714 - 15722

ISSN
1936-0851
DOI
10.1021/acsnano.0c06672
URI
http://hdl.handle.net/10203/279456
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0