How Rh surface breaks CO2 molecules under ambient pressure

Cited 24 time in webofscience Cited 14 time in scopus
  • Hit : 297
  • Download : 135
DC FieldValueLanguage
dc.contributor.authorKim, Jeongjinko
dc.contributor.authorHa, Hyunwooko
dc.contributor.authorDoh, Won Huiko
dc.contributor.authorUeda, Koheiko
dc.contributor.authorMase, Kazuhikoko
dc.contributor.authorKondoh, Hiroshiko
dc.contributor.authorMun, Bongjin Simonko
dc.contributor.authorKim, Hyun Youko
dc.contributor.authorPark, Jeong Youngko
dc.date.accessioned2020-12-29T07:30:03Z-
dc.date.available2020-12-29T07:30:03Z-
dc.date.created2020-12-14-
dc.date.issued2020-11-
dc.identifier.citationNATURE COMMUNICATIONS, v.11, no.1-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/10203/279275-
dc.description.abstractUtilization of carbon dioxide (CO2) molecules leads to increased interest in the sustainable synthesis of methane (CH4) or methanol (CH3OH). The representative reaction intermediate consisting of a carbonyl or formate group determines yields of the fuel source during catalytic reactions. However, their selective initial surface reaction processes have been assumed without a fundamental understanding at the molecular level. Here, we report direct observations of spontaneous CO2 dissociation over the model rhodium (Rh) catalyst at 0.1 mbar CO2. The linear geometry of CO2 gas molecules turns into a chemically active bent-structure at the interface, which allows non-uniform charge transfers between chemisorbed CO2 and surface Rh atoms. By combining scanning tunneling microscopy, X-ray photoelectron spectroscopy at near-ambient pressure, and computational calculations, we reveal strong evidence for chemical bond cleavage of OCO* with ordered intermediates structure formation of (2x2)-CO on an atomically flat Rh(111) surface at room temperature. Direct observation of carbon dioxide dissociation provides an origin of catalytic conversion for industrial chemical reactions. Here, the authors reveal their molecular interactions on the rhodium catalyst at near-ambient pressure by interface science techniques and computational calculations.-
dc.languageEnglish-
dc.publisherNATURE RESEARCH-
dc.titleHow Rh surface breaks CO2 molecules under ambient pressure-
dc.typeArticle-
dc.identifier.wosid000591592300017-
dc.identifier.scopusid2-s2.0-85095430496-
dc.type.rimsART-
dc.citation.volume11-
dc.citation.issue1-
dc.citation.publicationnameNATURE COMMUNICATIONS-
dc.identifier.doi10.1038/s41467-020-19398-1-
dc.contributor.localauthorPark, Jeong Young-
dc.contributor.nonIdAuthorKim, Jeongjin-
dc.contributor.nonIdAuthorHa, Hyunwoo-
dc.contributor.nonIdAuthorDoh, Won Hui-
dc.contributor.nonIdAuthorUeda, Kohei-
dc.contributor.nonIdAuthorMase, Kazuhiko-
dc.contributor.nonIdAuthorKondoh, Hiroshi-
dc.contributor.nonIdAuthorMun, Bongjin Simon-
dc.contributor.nonIdAuthorKim, Hyun You-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusDENSITY-FUNCTIONAL THEORY-
dc.subject.keywordPlusCORE-LEVEL SHIFT-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusPHOTOELECTRON-SPECTROSCOPY-
dc.subject.keywordPlusDISSOCIATION-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusMETHANOL-
dc.subject.keywordPlusRH(111)-
dc.subject.keywordPlusRHODIUM-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 24 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0