High-power few-cycle THz generation at MHz repetition rates in an organic crystal

Cited 23 time in webofscience Cited 19 time in scopus
  • Hit : 276
  • Download : 233
Ultrafast terahertz (THz) spectroscopy is a potent tool for studying the fundamental properties of matter. Limitations of current THz sources, however, preclude the technique being applied in certain advanced configurations or in the measurement of, e.g., strongly absorbing samples. In response to this problem, here we demonstrate the generation of 1.38 mW broadband THz radiation at 10 MHz repetition rate by combining the highly efficient nonlinear organic crystal HMQ-TMS with ultrafast pump pulses generated using a simple and stable external pulse compression of a high power, near-infrared (NIR) femtosecond ytterbium-doped fiber (Yb:fiber) laser. Utilizing spectral broadening in a large core, polarization maintaining photonic crystal fiber and a pair of SF11 prisms, we achieve a tenfold pulse compression of the Yb:fiber laser, yielding compressed 0.35 mu J pulses with a full-width at half maximum pulse duration of 22 fs, exerting a peak power of 13.8 MW at a repetition rate of 10 MHz. THz generation through optical rectification of the NIR pulses is explored in two distinct thicknesses of the organic crystal, leading to a maximum conversion efficiency of similar to 5.5 center dot 10(-4), an order of magnitude higher than that achieved with inorganic nonlinear crystals, e.g., gallium phosphide, for similar pump parameters. The focused THz beam has a peak on-axis field strength greater than 6.4 kV cm(-1) in unpurged atmosphere. We believe that our moderately strong-field THz source is well suited to a variety of applications in ultrafast THz spectroscopy, in particular THz-enabled scattering-type near-field, and scanning tunneling spectroscopy, where multi-MHz repetition rate sources are required.
Publisher
AMER INST PHYSICS
Issue Date
2020-10
Language
English
Article Type
Article
Citation

APL PHOTONICS, v.5, no.10, pp.106103

ISSN
2378-0967
DOI
10.1063/5.0022762
URI
http://hdl.handle.net/10203/278236
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
000582124300001.pdf(3.47 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 23 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0