Quantifying interface and bulk contributions to spin-orbit torque in magnetic bilayers

Cited 254 time in webofscience Cited 236 time in scopus
  • Hit : 155
  • Download : 0
Spin-orbit interaction-driven phenomena such as the spin Hall and Rashba effect in ferromagnetic/heavy metal bilayers enables efficient manipulation of the magnetization via electric current. However, the underlying mechanism for the spin-orbit interaction-driven phenomena remains unsettled. Here we develop a sensitive spin-orbit torque magnetometer based on the magneto-optic Kerr effect that measures the spin-orbit torque vectors for cobalt iron boron/platinum bilayers over a wide thickness range. We observe that the Slonczewski-like torque inversely scales with the ferromagnet thickness, and the field-like torque has a threshold effect that appears only when the ferromagnetic layer is thinner than 1 nm. Through a thickness-dependence study with an additional copper insertion layer at the interface, we conclude that the dominant mechanism for the spin-orbit interaction-driven phenomena in this system is the spin Hall effect. However, there is also a distinct interface contribution, which may be because of the Rashba effect.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2014-01
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.5

ISSN
2041-1723
DOI
10.1038/ncomms4042
URI
http://hdl.handle.net/10203/277473
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 254 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0