Choice data generation using usage scenarios and discounted cash flow analysis

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 340
  • Download : 144
DC FieldValueLanguage
dc.contributor.authorLee, Ungkiko
dc.contributor.authorKang, Namwooko
dc.contributor.authorLee, Ikjinko
dc.date.accessioned2020-10-16T00:55:19Z-
dc.date.available2020-10-16T00:55:19Z-
dc.date.created2020-09-20-
dc.date.created2020-09-20-
dc.date.created2020-09-20-
dc.date.created2020-09-20-
dc.date.created2020-09-20-
dc.date.issued2020-12-
dc.identifier.citationJOURNAL OF CHOICE MODELLING, v.37, pp.100250-
dc.identifier.issn1755-5345-
dc.identifier.urihttp://hdl.handle.net/10203/276623-
dc.description.abstractDiscrete choice analysis is a popular method of estimating heterogeneous customer preferences. Although model accuracy can be increased by including more choice data, this option is untenable when the obtaining of choice data from target customers is costly and time-consuming. We thus propose a method for choice data generation for commercial products whose expected money value is a key factor in consumer choice (e.g., commercial vehicles and financial product). Using an individual usage scenario, we generate a discounted cash flow (DCF) model instead of a utility model to estimate the discount rates, rather than partworths, of individual consumers. The DCF model helps us generate synthetic choice data from choice sets consisting of various combinations of attribute levels. Using these data, we employ a hierarchical Bayesian (HB) discrete choice analysis. We conclude the study with a case study on the preference estimation of a hybrid courier truck conversion. The results reveal that the DCF-based HB estimation outperforms the traditional HB estimation.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.titleChoice data generation using usage scenarios and discounted cash flow analysis-
dc.typeArticle-
dc.identifier.wosid000592428300008-
dc.identifier.scopusid2-s2.0-85090732851-
dc.type.rimsART-
dc.citation.volume37-
dc.citation.beginningpage100250-
dc.citation.publicationnameJOURNAL OF CHOICE MODELLING-
dc.identifier.doi10.1016/j.jocm.2020.100250-
dc.contributor.localauthorLee, Ikjin-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorDiscount rate-
dc.subject.keywordAuthorDiscounted cash flow-
dc.subject.keywordAuthorDiscrete choice analysis-
dc.subject.keywordAuthorHierarchical bayesian-
dc.subject.keywordPlusCONJOINT-ANALYSIS APPLICATIONS-
dc.subject.keywordPlusNET-PRESENT-VALUE-
dc.subject.keywordPlusCONSUMER CHOICE-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusHEALTH-
dc.subject.keywordPlusHETEROGENEITY-
dc.subject.keywordPlusPROJECT-
dc.subject.keywordPlusFUEL-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0