Electric Field Mediated Selectivity Switching of Electrochemical CO2 Reduction from Formate to CO on Carbon Supported Sn

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 30
  • Download : 0
Decades of electrochemical CO2 reduction research have led to established rules about the product selectivity, i.e., bare tin yields formic acid as the main product. Here, we present Sn nanoparticles supported on carbon nanotubes (CNTs) in a hollow fiber (Sn-CHF), which produce CO with 10 times higher selectivity than formate. Density functional theory calculations reveal that a strong interfacial field induced by the carbon support enhances the rate-limiting CO2 adsorption and thus CO production on Sn nanoparticles, whereas the field-insensitive formate and hydrogen production routes were completely suppressed and occurred mainly from carbon sites. Modification of the interfacial electric field via exchange of the electrolyte-containing cation from Li* to Cs* induces an unprecedented 2 orders of magnitude change in the CO current while keeping the other products almost unchanged. This work demonstrates how electrochemical selectivity rules can be modulated by controlling the interfacial field, thus opening up new windows for electrocatalyst design.
Publisher
AMER CHEMICAL SOC
Issue Date
2020-08
Language
English
Article Type
Article
Citation

ACS ENERGY LETTERS, v.5, no.9, pp.2987 - 2994

ISSN
2380-8195
DOI
10.1021/acsenergylett.0c01387
URI
http://hdl.handle.net/10203/276575
Appears in Collection
CH-Journal Papers(저널논문)CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0