Deep learning-based household electric energy consumption forecasting

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 23
  • Download : 5
With the advent of various electronic products, the household electric energy consumption is continuously increasing, and therefore it becomes very important to predict the household electric energy consumption accurately. Energy prediction models also have been developed for decades with advanced machine learning technologies. Meanwhile, the deep learning models are still actively under study, and many newer models show the state-of-the-art performance. Therefore, it would be meaningful to conduct the same experiment with these new models. Here, the authors predict the household electric energy consumption using deep learning models, known to be suitable for dealing with time-series data. Specifically, vanilla long short-term memory (LSTM), sequence to sequence, and sequence to sequence with attention mechanism are used to predict the electric energy consumption in the household. As a result, the vanilla LSTM shows the best performance on the root-mean-square error metric. However, from a graphical point of view, it seems that the sequence-to-sequence model predicts the energy consumption patterns best and the vanilla LSTM does not follow the pattern well. Also, to achieve the best performance of each deep learning model, vanilla LSTM, sequence to sequence, and sequence to sequence with attention mechanism should observe past 72, 72, and 24 h, respectively.
Publisher
INST ENGINEERING TECHNOLOGY-IET
Issue Date
2020-07
Language
English
Article Type
Article; Proceedings Paper
Citation

JOURNAL OF ENGINEERING-JOE, v.2020, no.13, pp.639 - 642

ISSN
2051-3305
DOI
10.1049/joe.2019.1219
URI
http://hdl.handle.net/10203/276487
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
000565270600067.pdf(1.03 MB)Download

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0