Lithium Dendrite Suppression with a Silica Nanoparticle-Dispersed Colloidal Electrolyte

Cited 25 time in webofscience Cited 18 time in scopus
  • Hit : 288
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Jinhongko
dc.contributor.authorLim, Hyung-Seokko
dc.contributor.authorCao, Xiako
dc.contributor.authorRen, Xiaodiko
dc.contributor.authorKwak, Won-Jinko
dc.contributor.authorRodriguez-Perez, Ismael A.ko
dc.contributor.authorZhang, Ji-Guangko
dc.contributor.authorLee, Hongkyungko
dc.contributor.authorKim, Hee-Takko
dc.date.accessioned2020-09-22T06:55:05Z-
dc.date.available2020-09-22T06:55:05Z-
dc.date.created2020-09-14-
dc.date.created2020-09-14-
dc.date.issued2020-08-
dc.identifier.citationACS APPLIED MATERIALS & INTERFACES, v.12, no.33, pp.37188 - 37196-
dc.identifier.issn1944-8244-
dc.identifier.urihttp://hdl.handle.net/10203/276386-
dc.description.abstractDeveloping a safe and long-lasting lithium (Li) metal battery I is crucial for high-energy applications. However, its poor cycling stability due to Li dendrite formation and excessive Li pulverization is the major hurdle for its practical applications. Here, we present a silica (SiO2) nanoparticle-dispersed colloidal electrolyte (NDCE) and its design principle for suppressing Li dendrite formation. SiO2 nanoclusters in the NDCE play roles in enhancing the Li+ transference number and increasing the Li+ diffusivity in the vicinity of the Li-plating substrate. The NDCE enables less-dendritic Li plating by manipulating the nucleation-growth mode and extending Sand's time. Moreover, SiO2 can interplay with the electrolyte components at the Li-metal surface, enriching fluorinated compounds in the solid electrolyte interface layer. The initial control of the Li plating morphology and SEI structure by the NDCE leads to a more uniform and denser Li deposition upon subsequent cycling, resulting in threefold enhancement of the cycle life. The efficacy of the NDCEs has been further demonstrated by the practical battery design, featuring a commercial-level cathode and thin Li-metal (40 mu m) anode.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleLithium Dendrite Suppression with a Silica Nanoparticle-Dispersed Colloidal Electrolyte-
dc.typeArticle-
dc.identifier.wosid000563074900037-
dc.identifier.scopusid2-s2.0-85089714373-
dc.type.rimsART-
dc.citation.volume12-
dc.citation.issue33-
dc.citation.beginningpage37188-
dc.citation.endingpage37196-
dc.citation.publicationnameACS APPLIED MATERIALS & INTERFACES-
dc.identifier.doi10.1021/acsami.0c09871-
dc.contributor.localauthorKim, Hee-Tak-
dc.contributor.nonIdAuthorLim, Hyung-Seok-
dc.contributor.nonIdAuthorCao, Xia-
dc.contributor.nonIdAuthorRen, Xiaodi-
dc.contributor.nonIdAuthorKwak, Won-Jin-
dc.contributor.nonIdAuthorRodriguez-Perez, Ismael A.-
dc.contributor.nonIdAuthorZhang, Ji-Guang-
dc.contributor.nonIdAuthorLee, Hongkyung-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorelectrodeposition-
dc.subject.keywordAuthorLi dendrite-
dc.subject.keywordAuthorLi metal batteries-
dc.subject.keywordAuthornanoparticle-dispersed colloidal electrolyte-
dc.subject.keywordAuthorsilica nanoparticle-
dc.subject.keywordPlusHIGH-ENERGY-
dc.subject.keywordPlusHYBRID ELECTROLYTES-
dc.subject.keywordPlusSALT-SOLUTIONS-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusANODES-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusCHALLENGES-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 25 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0