Multifaceted Examination of Multielectron Transfer Reactions

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 404
  • Download : 0
Multielectron transfer reactions, which are important in many biological and technological contexts, are paradoxical, because transfer of a second unit of charge should be energetically more difficult than the first. Straightforward changes in structure or composition often are offered as an explanation for the redox potential inversion that leads to multielectron behavior. We have explored the basis of this phenomenon by carrying out density functional theory studies of two-electron redox systems that have been carefully characterized by electrochemical methods. Principal findings include the fact that the energy of vertical electron attachment predominates that of structural or compositional change and thus controls the energetics of a given redox event. In addition, decisive energy changes in electron attachment processes often occur in lower-lying rather than frontier orbitals. Thus, simple tracking of LUMO/SOMO/HOMO energy changes (Walsh’s rule) is sometimes inadequate for complete understanding of redox-triggered events. These concepts are illustrated in our combined experimental/computational examination of the following two-electron redox systems: (i) reduction of binuclear, ligand-bridged complexes of Mo and W accompanied by metal−metal bond cleavage and structural rearrangement, (ii) reduction of bis(hexamethylbenzene) complexes of Fe, Ru, and Os accompanied by a change in ligand hapticity, and (iii) reduction of Pt(IV) antitumor prodrugs, whose reductive elimination of axial ligands generates the active Pt(II) form of the drug.
Publisher
ELSEVIER SCIENCE SA
Issue Date
2020-09
Language
English
Article Type
Review
Citation

INORGANICA CHIMICA ACTA, v.510

ISSN
0020-1693
DOI
10.1016/j.ica.2020.119746
URI
http://hdl.handle.net/10203/275430
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0