Flexible Bottom-Gated Organic Field-Effect Transistors Utilizing Stamped Polymer Layers from the Surface of Water

Cited 13 time in webofscience Cited 8 time in scopus
  • Hit : 330
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorSung, Yooriko
dc.contributor.authorShin, Eul-Yongko
dc.contributor.authorNoh, Yong-Youngko
dc.contributor.authorLee, Jung-Yongko
dc.date.accessioned2020-07-09T02:55:09Z-
dc.date.available2020-07-09T02:55:09Z-
dc.date.created2020-06-23-
dc.date.created2020-06-23-
dc.date.created2020-06-23-
dc.date.issued2020-06-
dc.identifier.citationACS APPLIED MATERIALS & INTERFACES, v.12, no.22, pp.25092 - 25099-
dc.identifier.issn1944-8244-
dc.identifier.urihttp://hdl.handle.net/10203/275397-
dc.description.abstractThe facile sequential deposition of functional organic thin films by solution processes is critical for the development of a variety of high-performance organic devices without restriction in terms of materials and processes. Herein, we propose a simple fabrication process that entails stacking multiple layers of functional polymers to fabricate organic field-effect transistors (OFETs). The process involves stamping organic semiconducting layers formed on the surface of water onto a commonly used polymeric dielectric layer. Our scheme makes it possible to independently optimize organic semiconductor films by controlling the solvent evaporation time during the process of film formation on the surface of water. This approach eliminates the need to be concerned about any interference with adjacent layers. Utilizing this process, the fabrication of high-performance bottom-gated OFETs is demonstrated on a glass and a flexible substrate. The OFETs consist of a vertically stacked diketopyrrolopyrrole-based polymer semiconducting layer on the poly(methyl methacrylate) film with a maximum hole mobility of 0.85 cm(2)/V s.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleFlexible Bottom-Gated Organic Field-Effect Transistors Utilizing Stamped Polymer Layers from the Surface of Water-
dc.typeArticle-
dc.identifier.wosid000538515700061-
dc.identifier.scopusid2-s2.0-85086007885-
dc.type.rimsART-
dc.citation.volume12-
dc.citation.issue22-
dc.citation.beginningpage25092-
dc.citation.endingpage25099-
dc.citation.publicationnameACS APPLIED MATERIALS & INTERFACES-
dc.identifier.doi10.1021/acsami.0c03612-
dc.contributor.localauthorLee, Jung-Yong-
dc.contributor.nonIdAuthorShin, Eul-Yong-
dc.contributor.nonIdAuthorNoh, Yong-Young-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthororganic field-effect transistor-
dc.subject.keywordAuthorspontaneous spreading process-
dc.subject.keywordAuthorstamping transfer-
dc.subject.keywordAuthorflexible device-
dc.subject.keywordAuthorlow-temperature process-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCOPOLYMER-
dc.subject.keywordPlusMOBILITY-
dc.subject.keywordPlusSEMICONDUCTORS-
dc.subject.keywordPlusORIENTATION-
dc.subject.keywordPlusDIELECTRICS-
dc.subject.keywordPlusAMBIPOLAR-
dc.subject.keywordPlusSOLVENTS-
dc.subject.keywordPlusFILMS-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0