Deep Generative Models-Based Anomaly Detection for Spacecraft Control Systems

Cited 15 time in webofscience Cited 12 time in scopus
  • Hit : 328
  • Download : 0
A spacecraft attitude control system provides mechanical and electrical control to achieve the required functions under various mission scenarios. Although generally designed to be highly reliable, mission failure can occur if anomalies occur and the attitude control system fails to properly orient and stabilize the spacecraft. Because accessing spacecraft to directly repair such problems is usually infeasible, developing a continuous condition monitoring model is necessary to detect anomalies and respond accordingly. In this study, a method for detecting anomalies and characterizing failures for spacecraft attitude control systems is proposed. Herein, features are extracted from multidimensional time-series data of a simulation of the attitude control system. Then, the artificial neural network learning algorithms based on two types of generation models are applied. A Bayesian optimization algorithm with a Gaussian process is used to optimize the hyperparameters for the neural network to improve the performance. The performance is evaluated based on the reconstruction error through the algorithm using the newly generated data not used for learning as input data. Results show that the detection performance depends on the operating characteristics of each submode in the operation scenarios and type of generation model. The diagnostic results are monitored to detect anomalies in operation modes and scenarios.
Publisher
MDPI
Issue Date
2020-04
Language
English
Article Type
Article
Citation

SENSORS, v.20, no.7

ISSN
1424-8220
DOI
10.3390/s20071991
URI
http://hdl.handle.net/10203/275326
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0